Nabídka předmětů v cizím jazyku pro výměnné studenty v akademickém roce 2017/2018

WINTER TERM:

KMT/ ECAL1 Calculus 1

Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Jitka Laitochova
Semester in which the course is taught:		winter	

Description:

Differential calculus of real functions of a real variable and its applications. It is focused at basic terms of the theory like real functions of a real variable, limits, continuity, derivatives, maxima and minima and graph sketching.

Content: Basic terms and concepts; limits; derivatives; transcendental functions; application of derivatives; curve sketching with derivatives; approximations of functions (differentials, Taylor's theorem); derivatives of implicit functions; sequences.

KMT/ ECAL3 Calculus 3 Number of ECTS credits: 6 Course completion: Exam **Completion requirements:** Jitka Laitochova 50 % attendance, Lecturer: tutorial work Semester in which the course is taught: winter **Description:** Differential calculus of functions of two or more variables. Applications of partial derivatives are demonstrated. Main topics: n-dimensional space, metric space, Euclidean space. Neighbourhood of n-dimensional space. Function of several variables. Domain and range. Geometric meaning of the function z = f(x, y). Limit of a function of several variables. Improper limit. Continuity of functions of several variables. Composite functions of several variables. Theorem on the continuity of composite functions. Partial derivatives of functions of several variables. Geometrical meaning of partial derivative of a function f (x, y). Higher partial derivatives. Schwarz theorem. Differentiable function. Complete differential. Geometrical meaning of the complete differential df(x, y). Complete differentials of higher orders. Partial derivatives of composite functions. Higher derivatives of a composite function. Taylor and Maclaurin's formula. Maxima, Minima, and Saddle Points. Fermat's theorem Sufficient conditions for local extrema. Implicit functions and their derivatives. Theorems on the existence of a derivative of an implicit function expressed by the equation F(x, y) = 0 and the equation F(x, y, z) = 0

KMT/EAG1B Algebra course 1				
Number of ECTS credits:	6	Course completion:	Exam	
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal	
Semester in which the course is taught: winter				
Description:				
The course main objective is an active understanding of basic algebraic concepts necessary for				
further study of algebra and other mathematical disciplines.				

Introduction to propositional and predicate logic. Algebraic structures with one or two operations. Vector spaces - linear dependency, basis, dimensions, orthogonality. Linear algebra.

KMT/EAG3B Algebra course 3			
Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance,	Lecturer:	Tomáš Zdráhal
	tutorial work		
Semester in which the cours	se is taught:	winter	
Description:			
The aim is understanding of	algebraic solvability of al	gebraic equations.	
Polynomials			
Decomposition of polynomials of one indeterminate over the field of complex and field of real			
numbers. Symmetric polyno	mials		
The main theorem on symm	etric polynomials, using	symmetric polynomials.	
Algebraic solutions of algebr	aic equations		
Binomial equations, algebraic solvability of algebraic equations of the second, third and fourth			
degrees.			

KMT/EIAMB ICT appl	ication in Mathema	itics		
Number of ECTS credits:	4	Course completion:	Exam	
Completion requirements:	50 % attendance,	Lecturer:	David Nocar	
	tutorial work			
Semester in which the cours	se is taught:	winter		
Description:				
The subject is focused on int	roducing to students the	possibilities of mathema	atical software, both	
applying MS Office (Microso	applying MS Office (Microsoft Equation, MathType) and specific mathematical applications used in			
mathematics teaching at elementary schools. It meets the requirements of educating future				
mathematics teachers within	n the state informational	politics and of informati	onal literacy of all	
teachers.				
It works with basic types of mathematical instructional environment (dynamic geometry,				
spreadsheets, computer algebraic systems). Individual systems are demonstrated by Cabri Geometrie				
(or: CaR Geogebra, GEONExT), MS Excel (or: OpenOffice Calc and Google Spreadsheets), Imagine				
Logo (or: Comenius Logo) and Derive.				

KMT/EETM English Terminology in Mathematics				
Number of ECTS credits:	4	Course completion:	Exam	
Completion requirements:	50 % attendance,	Lecturer:	Jitka Laitochova	
	tutorial work			
Semester in which the course is taught: winter				
Description:				
The subject consists of three independent units Algebra, Geometry and Calculus. Each of these units				
deals with basic terms, assertions and problems focusing on applications of mathematics at				
elementary schools. The subject is taught in English.				

KMT/EKGE Construction Geometry for Teachers of Mathematics Number of ECTS credits: 4 **Course completion:** Exam **Completion requirements:** 50 % attendance, Lecturer: Jitka Hodaňová tutorial work, the student elaborates and passes on 2 drawn problems. Semester in which the course is taught: winter **Description:** Focal properties of conic sections. Orthogonal projection. Free parallel projection. Monge's projection, axonometric projection and its application (Projective method of choice).

KMT/EIDMA The Intro	oduction to Didact	ics of Mathematics	Α	
Number of ECTS credits:	5	Course completion:	Exam	
Completion requirements:	50 % attendance,	Lecturer:	Radka Dofková	
	tutorial work			
Semester in which the course is taught: winter				
Description:				
The purpose of this seminar is to introduce students to basic points from didactics of mathematics in				
prospective mathematics teachers training. The course will be structured to present main didactical				
principles of mathematical teaching and to practice various activities which are supposed to increase				
pupils' motivation in mathematics.				

(KMT/ABILI)

Number of ECTS credits:	4	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Martina Uhlířová
Semester in which the cours	se is taught:	winter	I
Deceriations			

Description:

The course is designed for students of primary school teacher training. The aim of the course is: to familiarize the students with methods and means of developing mathematical abilities of young children, i. e. to provide them with activities aiming at the development of spatial imagination, with some ideas for solving word problems, and with number tasks, to explain the basic terms and concepts.

SUMMER TERM

KMT/ ECAL2 Calculus 2				
Number of ECTS credits:	6	Course completion:	Exam	
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Jitka Laitochova	
Semester in which the course is taught: summer				
Description:				
Integral calculus of real functions of a real variable. Main topics are indefinite integral, definite integral and applications of definite integral.				

KMT/	ECAL4	Calculus	4
------	-------	----------	---

Number of ECTS credits:	6	Course completion:	Exam	
Completion requirements:	50 % attendance,	Lecturer:	Jitka Laitochova	
	tutorial work			
Semester in which the cours	se is taught:	summer		
Description:				
Infinite sequences and infini	te series of constants an	d functions. Basic theory	of infinite series.	
Applications of power series				
Main topics:				
Infinite sequences of numbe	rs.			
Infinite series of numbers - basic terms and concepts.				
Series with non-negative members.				
Absolute convergence.				
Sequences and series of functions.				
Power series and their applic	cations.			

KMT/EAG2B Algebra	course 2			
Number of ECTS credits:	6	Course completion:	Exam	
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal	
Semester in which the course is taught: summer				
Description:				
The course focuses on exploring the algebraic properties of the structure of polynomials over a				
general range, respectively. field integrity. The main differences algebraic and functional approach to				
polynomials. Students will also address the divisibility of polynomials over a general body and some				
methods of finding the roots	s of polynomials.			

KMT/EAG4B Algebra course 4			
Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal
Semester in which the course is taught: summer			
Description:			
The course aims to fully understand to the theory of algebraic structures with several operations. Properties of groups. Lagrange's theorem in the group theory. Factor groups. Group homomorphism. Lattices and lattices homorphism. Boolean algebra. Application of lattices and Boolean algebras.			

KMT/EIDMB The Introduction to Didactics of Mathematics B

Number of ECTS credits:	5	Course completion:	Exam
Completion requirements:	50 % attendance,	Lecturer:	Radka Dofková
	tutorial work		
Semester in which the course is taught: summer			
Description:			
This seminar follows on The Introduction to Didactics of Mathematics A from summer semester.			
There will be more special technics which could be useful in mathematics teaching at primary school.			
There will be focus on students' active involvement into course and on practical teachings methods.			

KMT/EITME ICT in Mathematics Education			
Number of ECTS credits:	4	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Jan Wossala
Semester in which the course is taught:		summer	
Description:			

The purpose of the course is to familiarize students with current possibilities of using ICT in the teaching of mathematics at lower primary schools. Great attention will be paid to possible applications of computers as a support for teachers, the education process, and the pupil's individual work.

Students should acquire the skills needed in order to effectively incorporate the computer technology into the teacher preparation, to involve the computer technology in the teaching of mathematics, and to employ computers for the purposes of the primary school pupils` individual work and homework.

KMT/EPRST Introduction to probability theory and mathematical statistics

Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance,	Lecturer:	Kamila Fačevicová
	tutorial work		
Semester in which the course is taught:		summer	
Descriptions			

Description:

The aim of the course is to introduce the basics of the probability theory and mathematical statistics. The course is focused on probability of a random event occurance, basic characteristics of random variables and analysis of dependency between two random variables. Also some descriptive statistical tools are explained.

KMT/EAMS Applications of mathematical statistics			
Number of ECTS credits:	4	Course completion:	Exam
Completion requirements:	50 % attendance,	Lecturer:	Kamila Fačevicová
	tutorial work		
Semester in which the course is taught: summer			
Description:			
The aim of the course is to serve a basic knowledge about statistical hypothesis testing. Students are			
supposed to learn how to analyse their own datasets. Particularly, how to state the statistical			
hypothesis, choose the proper method and proceed the analysis using R software. One of the main			

part of the course is dedicated to the interpretation of the results.